Objective

Data sharing is promoted in different avenues; a powerful one is the scholarly publication process. This research examines interdisciplinary differences in journal data sharing policies and, to a smaller extent, data sharing policies of major publishers.

Design

The websites of a sample of academic journals and of major journal publishers were examined for information on policies relating to the sharing of data supporting the research. Unlike the usual research strategy in the field, we opted for a broader, across-disciplines sample, albeit at the expense of depth.

Data Sharing: definitions

Two definitions were adopted:
- **Enabling data sharing:** policy of possible but not mandatory sharing of academic paper-related research data on a digital platform
- **Strong data sharing:** where at least some types of data must be deposited for open sharing as a condition for publication.

Results

The journal sample was selected from fifteen disciplines, drawn from five main academic discipline categories. These are:
- **Biomedical Sciences**, including Life Sciences and Medicine;
- **Physical Sciences**, here meaning Natural Sciences without Life Sciences;
- **Social Sciences**;
- **Arts and Humanities**;
- **Formal Sciences.**

For each of the 15 disciplines, journals were ranked according to the Scientific Journal Ranking (SJR) score. 10 representative journals were selected through the ranking for each discipline. In total, 150 journals were examined.

Overall, 29% of the sample journals enable data sharing - but it is not mandatory. In 13% of the journals, strong data sharing policies are in place. Over half of the journals provided no option for data sharing. See Chart.

Interdisciplinary comparisons

The table shows the central results for journal policies in the 5 discipline categories.

<table>
<thead>
<tr>
<th>Discipline group</th>
<th>Discipline listing</th>
<th>Journals enabling data sharing</th>
<th>Journals with strong data sharing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomedical Sciences</td>
<td>Genetics, Neuroscience, Oncology, Pharmacology (Medical)</td>
<td>27</td>
<td>12</td>
</tr>
<tr>
<td>Physical Sciences</td>
<td>Chemistry, Geology, Ecology</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences</td>
<td>Economics, Social Psychology, Political Science & Int. Relations</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>Arts and Humanities</td>
<td>Archeology, Music, History</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Formal Sciences</td>
<td>Computer Science, Statistics & Probability</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

*Committee on Publishing Ethics (COPE), *^Bar-Ilan University, Israel

Role of Publishers

The research showed the importance of the major journal publishers in promoting data sharing. The five leading publishers account for 56% of the journals enabling sharing and 46% of the strong data sharing journals. Yet they publish only a third of the sample journals.

Conclusions

Assuming that journal and publisher policies are an important indicator of actual data sharing, the results consolidate the notion of the primacy of **Biomedical Sciences** in the implementation of data sharing and the lagging implementation in the **Arts and Humanities**.

The results show similar levels of adoption in the **Physical** and **Social Science** and to the overlooked status of the **Formal Sciences**, which demonstrate low levels of data sharing implementation.

A caveat: Other tools for encouraging data sharing exist; these may be stronger than publication policies in less "journal-centric" disciplines.

Contacts

Michal Tal-Socher* and Adrian Ziderman* ^

Noriktal@hotmail.com
zidera@mail.biu.ac.il